

8CX300Fe

COAXIAL TRANSDUCER

KEY FEATURES

- High power handling: 600 W / 100 W program power
- 2,5" / 1,75" voice coil (LF/HF)
- High sensitivity: 95 / 105 dB (1W / 1m) (LF/HF)
- FEA optimized common magnet circuit

- Shorting cap for extended response
- Weatherproof cone with treatment for both sides of the cone
- PM4 HF diaphragm
- 70° conical coverage horn

TECHNICAL SPECIFICATIONS

200 mm

Nominai diameter	200 mm		8 in
Rated impedance (LF/HF)			8 / 16 Ω
Minimum impedance (LF/HF)		6,	6 / 10,1 Ω
Power capacity 1 (LF/HF)		300 /	50 W _{AES}
Program power ² (LF/HF)		60	0 / 100 W
Sensitivity (LF/HF ³)	95 dB	1W /	1m @ Z _N
	105 dB	1W /	1m @ Z _N
Frequency range		90 - 2	20.000 Hz
Recom. HF crossover	2 kHz or higher (12 dB/oct min slope)		
Voice coil diameter (LF/HF)	63,5 mm		2,5 in
	44,4 r	nm	1,75 in
BI factor			9,6 N/A
Moving mass			0,020 kg
Voice coil length			15 mm
Air gap height			7 mm

THIELE-SMALL PARAMETERS4

Resonant frequency, f _s	89 Hz
D.C. Voice coil resistance, Re	5,2 Ω
Mechanical Quality Factor, Q _{ms}	4,2
Electrical Quality Factor, Q _{es}	0,63
Total Quality Factor, Qts	0,55
Equivalent Air Volume to C _{ms} , V _{as}	10,8 I
Mechanical Compliance, C _{ms}	158 μm / N
Mechanical Resistance, R _{ms}	2,7 kg/s
Efficiency, η ₀	1,2 %
Effective Surface Area, S _d	0,022 m ²
Maximum Displacement, X _{max} ⁵	6 mm
Displacement Volume, V _d	132 cm ³
Voice Coil Inductance, Le @ 1 kHz	0,2 mH

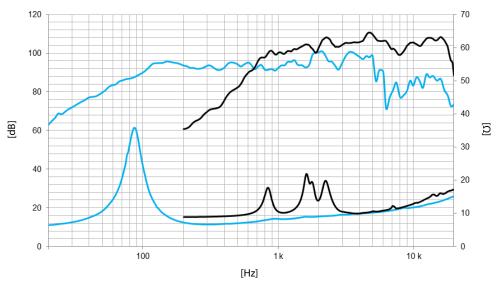
Notes:

Nominal diameter

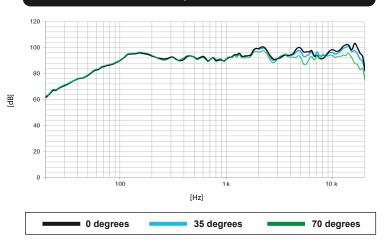
¹ The power capaticty is determined according to AES2-1984 (r2003) standard.

² Program power is defined as power capacity + 3 dB.

³ Sensitivity was measured at 1m distance, on axis, with 1W input, averaged in the range 2 - 10 kHz


⁴ T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).

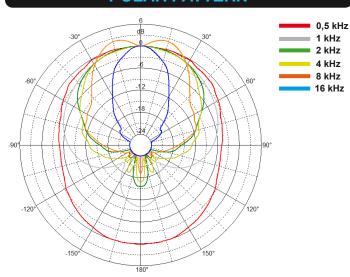
 $^{^{6}}$ The $\rm X_{max}$ is calculated as ($\rm L_{vc}$ - $\rm H_{ag}$)/2 + ($\rm H_{ag}$ /3,5), where $\rm L_{vc}$ is the voice coil length and $\rm H_{ag}$ is the air gap height.


8CX300Fe

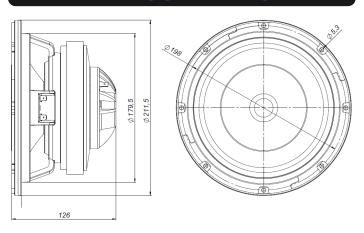
COAXIAL TRANSDUCER

Note: Frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

FILTERED FREQUENCY RESPONSE



Note: Filtered frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m using filter FD-2CX


MOUNTING INFORMATION

Overall diameter	211,5 mm	8,3 in
Bolt circle diameter	198 mm	7,8 in
Baffle cutout diameter:		
- Front mount	179,5 mm	7,1 in
Depth	126 mm	4,9 in
Net weight	4,6 kg	10,1 lb
Shipping weight	4,9 kg	10,8 lb

POLAR PATTERN

DIMENSION DRAWING

