

15CXA400Nd

COAXIAL TRANSDUCER

KEY FEATURES

- Program power: 800 / 180 W_{AES} (LF / HF)
- Sensitivity: 98 / 105 dB (1W / 1m) (LF / HF)
- 4" voice coil woofer
- 2.85" voice coil compression driver
- Common neodymium magnet system design

- Demodulating rings in both LF and HF units
- Composite Titanium / Polyester HF diaphragm
- Weatherproof LF cone
- 60° coverage horn for HF dispersion control

TECHNICAL SPECIFICATIONS

380) mm	15 in
		8 / 16 Ω
	6,	6 / 10,9 Ω
	400 /	90 W _{AES}
	80	0 / 180 W
98 dB	1W /	1m @ Z _N
105 dB	1W /	1m @ Z _N
	40 - 2	20.000 Hz
		or higher of min slope)
101,6	mm	4 in
72,4	mm	2,85 in
		19 N/A
		0,084 kg
		16 mm
		10 mm
		28 mm
	98 dB 105 dB 1 (1	400 / 80 98 dB 1W / 105 dB 1W / 40 - 2 1,5 kHz

THIELE-SMALL PARAMETERS 4

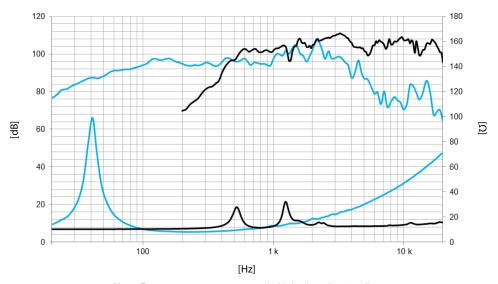
Resonant frequency, f _s	40 Hz
D.C. Voice coil resistance, R _e	6,6 Ω
Mechanical Quality Factor, Q _{ms}	4,4
Electrical Quality Factor, Q _{es}	0,39
Total Quality Factor, Qts	0,36
Equivalent Air Volume to C _{ms} , V _{as}	196 I
Mechanical Compliance, C _{ms}	181 μm / N
Mechanical Resistance, R _{ms}	4,9 kg / s
Efficiency, η ₀	3,3 %
Effective Surface Area, S _d	0,088 m ²
Maximum Displacement, X _{max} ⁵	6 mm
Displacement Volume, V _d	350 cm ³
Voice Coil Inductance, L _e	1 mH

Notes

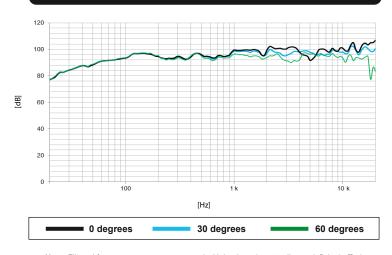
¹ The power capaticty is determined according to AES2-1984 (r2003) standard.

² Program power is defined as power capacity + 3 dB.

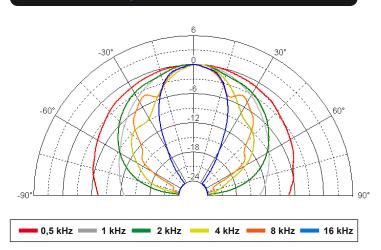
³ Sensitivity was measured at 1m distance, on axis, with 1W input, averaged in the range 1 - 7 kHz


⁴ T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).

 $^{^{\}rm s}$ The ${\rm X}_{\rm max}$ is calculated as $({\rm L}_{\rm VC}$ - ${\rm H}_{\rm ag})/2$ + $({\rm H}_{\rm ag}/3,5)$, where ${\rm L}_{\rm VC}$ is the voice coil length and ${\rm H}_{\rm ag}$ is the air gap height.

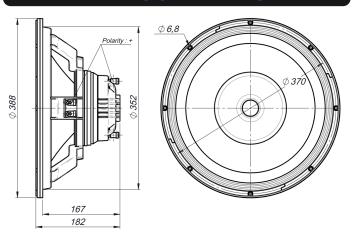

15CXA400Nd

COAXIAL TRANSDUCER


Note: Frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

FILTERED FREQUENCY RESPONSE

Note: Filtered frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m using filter FD-2XA


POLAR PATTERN

MOUNTING INFORMATION

Overall diameter	388 mm	15,3 in
Bolt circle diameter	370 mm	14,6 in
Baffle cutout diameter:		
- Front mount	352 mm	13,8 in
Depth	182 mm	7,2 in
	7 I	0,25 ft ³
Net weight	7,2 kg	15,9 lb
Shipping weight	8,1 kg	17,9 lb

DIMENSION DRAWING

