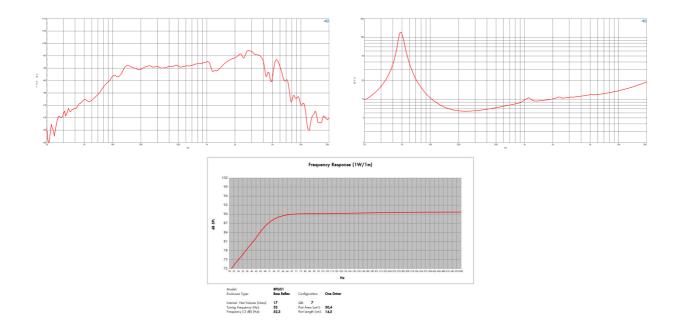


8FG51 8Ω

LF Drivers - 8.0 Inches



- 500 W continuous program power capacity
- 51 mm (2 in) copper voice coil
- 50 4000 Hz response93 dB sensitivity
- Shorting copper cap for extended HF response
- Ventilated voice coil gap for reduced power compression

LF Drivers- 8.0 Inches

SPECIFICATIONS

200 mm (8.0 in) Nominal Diameter 8 Ω Nominal Impedance 6.5 Ω Minimum Impedance 250 W Nominal Power Handling¹ 500 W Continuous power handling² 93.0 dB Sensitivity $(1W/1m)^3$ 50 - 4000 Hz Frequency Range 51 mm (2.0 in) Voice Coil Diameter Copper Winding Material Glass Fibre Former Material 17.0 mm (0.65 in) Winding Depth 8.0 mm (0.31 in) Magnetic Gap Depth 1.15 T Flux Density

DESIGN

Roll
Exponential
Ferrite Ring
Single
T-Pole
/aterproof Front Side
17.0 dm ³ (0.6 ft ³)
52 Hz

PARAMETERS⁴

Roll

Resonance Frequency	49 Hz
Re	5.1 Ω
Qes	0.34
Qms	9.0
Qts	0.32
Vas	20.0 dm ³ (0.71 ft ³)
Sd	220.0 cm ² (34.1 in ²)
ηο	0.7 %
Xmax	± 6.5 mm
Xvar	± 8.0 mm
Mms	35.0 g
BI	12.9 Txm
Le	0.5 mH
EBP	144 Hz

MOUNTING AND SHIPPING INFO

Overall Diameter	225 mm (8.8 in)	
Bolt Circle Diameter	210 mm (8.3 in)	
Baffle Cutout Diameter	187.0 mm (7.4 in)	
Depth	93 mm (3.7 in)	
Flange and Gasket Thickness	11 mm (0.43 in)	
Air Volume Occupied by Driver $1.5~\text{dm}^3~\text{(0.05~ft}^3\text{)}$		
Net Weight	3.5 kg (7.7 lb)	
Shipping Units	1	
Shipping Weight	3.95 kg (8.71 lb)	
Shipping Weight	3.95 Kg (6.71 lb)	

SERVICE KIT

Recone kit	RCK008FG518

- 2 hours test made with continuous pink noise signal within the range Fs-10Fs. Power calculated on rated minumum impedance. Loudspeaker in free air.
 Power on Continuous Program is defined as 3 dB greater than the Nominal rating.
 Applied RMS Voltage is set to 2.83 V for 8 ohms Nominal Impedance.

B&C Speakers s.p.a.

4. Thiele-Small parameters are measured after a high level 20 Hz sine wave preconditioning test.	